https://ogma.newcastle.edu.au/vital/access/ /manager/Index ${session.getAttribute("locale")} 5 TLR2-mediated innate immune priming boosts lung anti-viral immunity https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:48671 Tue 28 Mar 2023 10:25:49 AEDT ]]> Airway remodelling and inflammation in asthma are dependent on the extracellular matrix protein fibulin-1c https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:33793 –/–) mice had reduced mucin (MUC) 5 AC levels, but not MUC5B levels, in the airways as compared with wild‐type (WT) mice. Fbln1c interacted with fibronectin and periostin that was linked to collagen deposition around the small airways. Fbln1c–/– mice with AAD also had reduced numbers of α‐smooth muscle actin‐positive cells around the airways and reduced airway contractility as compared with WT mice. After HDM challenge, these mice also had fewer airway inflammatory cells, reduced interleukin (IL)‐5, IL‐13, IL‐33, tumour necrosis factor (TNF) and CXCL1 levels in the lungs, and reduced IL‐5, IL‐33 and TNF levels in lung‐draining lymph nodes. Therapeutic targeting of Fbln1c reduced the numbers of GATA3‐positive Th2 cells in the lymph nodes and lungs after chronic HDM challenge. Treatment also reduced the secretion of IL‐5 and IL‐13 from co‐cultured dendritic cells and T cells restimulated with HDM extract. Human epithelial cells cultured with Fbln1c peptide produced more CXCL1 mRNA than medium‐treated controls. Our data show that Fbln1c may be a therapeutic target in chronic asthma.]]> Thu 28 Oct 2021 13:02:39 AEDT ]]> Airway mechanical compression: its role in asthma pathogenesis and progression https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:38505 Thu 18 Nov 2021 09:58:18 AEDT ]]> Persistent induction of goblet cell differentiation in the airways: therapeutic approaches https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:34955 Thu 17 Feb 2022 09:32:05 AEDT ]]> Blocking notch3 signaling abolishes MUC5AC production in airway epithelial cells from individuals with asthma https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:46730 Thu 01 Dec 2022 10:28:14 AEDT ]]> Airway epithelial cell immunity is delayed during rhinovirus infection in asthma and COPD https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:38585 in vitro airway epithelial infection models using high multiplicity of infection (MOI) and lacking genome-wide, time course analyses have obscured the role of epithelial innate anti-viral immunity in asthma and COPD. To address this, we developed a low MOI rhinovirus model of differentiated primary epithelial cells obtained from healthy, asthma and COPD donors. Using genome-wide gene expression following infection, we demonstrated that gene expression patterns are similar across patient groups, but that the kinetics of induction are delayed in cells obtained from asthma and COPD donors. Rhinovirus-induced innate immune responses were defined by interferons (type-I, II, and III), interferon response factors (IRF1, IRF3, and IRF7), TLR signaling and NF-κB and STAT1 activation. Induced gene expression was evident at 24 h and peaked at 48 h post-infection in cells from healthy subjects. In contrast, in cells from donors with asthma or COPD induction was maximal at or beyond 72–96 h post-infection. Thus, we propose that propensity for viral exacerbations of asthma and COPD relate to delayed (rather than deficient) expression of epithelial cell innate anti-viral immune genes which in turns leads to a delayed and ultimately more inflammatory host immune response.]]> Mon 29 Jan 2024 18:03:54 AEDT ]]>